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DEFINITION OF SYMBOLS

Symbol Definition
A Vector potential

a Radius of cylinder

E Magnetic induction

c Velocity of light

E Electric displacement

E Electric field

g Magnetic field

J~ Current density

k Propagation constant (2rfi/\)
L Energy flux density at a surface
2 Length of cylinder

Q, ﬁ1, ﬁ, ?, € Unit vectors

M Magnetization

m Refractive index

E Polarization vector

P Dipole moment

§ Poynting vector

2 Scattering matrix

S; Scattering amplitude functions
v Velocity
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Symbol Definition
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a Tilt angle

B Bisectrix angle

€ Permittivity or dielectric constant

€ Permittivity of free space

] Scattering angle

A Wavelength

M Permeability

Ho Permeability of free space

p Charge density

o Electric conductivity

% Differential scattering cross section

¢ Scalar electric potential

¢ Azimuth angle between the plane of incident beam and z-axis and
the scattering plane

w Angular frequency
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TECHNICAL MEMORANDUM X-64545

ELECTROMAGNETIC SCATTERING BY CYLINDERS — AN INTRODUCTION

SUMMARY

This report, the first of a series of papers, presents an introduction to the
scattering of electromagnetic waves by cylinders. The basic scattering features particular
to cylinders are discussed from the Rayleigh-Gans theory.

In the first part of the report a review of electromagnetism and a derivation of
dipole radiation are presented. In the second part, the basic scattering theory is given.
From the equations for dipole radiation, the theory of scattering by cylinders according
to the Rayleigh-Gans theory is developed.

A computer program to calculate the scattering intensity functions is presented.

INTRODUCTION

This report is the first of a series of papers describing the scattering of electro-
magnetic waves by cylinders. The applications are numerous, e.g., in studying cylindrical
plasma, polymers, paints, rodlets, and platelets; in the fields of astronomy, chemistry,
meteorology, and physics. Cylindrical scattering differs from spherical scattering in
several important ways. There is a loss in the degree of symmetry introducing anisotropic
processes which can generally be characterized by a shape factor. There are off-diagonal
components in the scattering matrix which arise from the mixing of the electric field
-components.

The general methods to be discussed in these reports are (1) Rayleigh, (2)
Rayleigh-Gans, (3) infinite cylinders, (4) finite cylinders by neglecting end effects, (5)
geometric scattering, (6) Watson transformations, (7) Wiener-Hopf technique, (8) per-
turbation techniques, (9) symmetry techniques, (10) S-matrix theory, and (11) diffraction
theory. :



ELECTROMAGNETIC THEORY

Maxwell Equations

Light, electromagnetic radiation, is described by Maxwell’s equations. All
theoretical optics problems, including scattering problems, can be solved formally by
using Maxwell’s equations.

The state of excitation (force) which is established in space and detected by the
presence of an electric charge is said to constitute an electromagnetic field. The electro-
magnetic field is a vector field, and associated with it are the two vectors E and B,

called the electric field vector and the magnetic induction vector, respectively. The
spatial and temporal derivatives of these two vectors are defined by Maxwell’s simultaneous
partial differential equations [1]:

v:-D=p (1)
v-B=20 2)
3B
VXE =- = 3
E ot 3)
b
VXH=J+ = “)
~ ~ 3t

“where p is the electric charge density. The vectors D, H, and J, are the electric

displacement, the magnetic vector, and the electric current density, respectively. For
macroscopic media, the dynamical response of the aggregates of the atoms is summarized
in the constitutive relations for isotropic, permeable, conducting dielectrics [2] :

D=¢E (3)

J =0E (6)
B

H= =X @)

~ K




where e is the electric permittivity, o is the specific electrical conductivity, and u is
the magnetic permeability. In this work, e and u are assumed to be scalars.

Maxwell’s equations are the results of particular experimental laws: equation (1)
from Coulomb’s law, equation (4) from Ampere’s law, equation (3) from Faraday’s
law, and equation (2) from the observed nonexistence of magnetic monopoles.

Table 1 gives the units of the electromagnetic quantities.

TABLE 1. ELECTROMAGNETIC QUANTITIES IN SI UNITS

Symbol Quantity Units?
E Electric Field N/C
LI Magnetic Field ‘ C/m-sec
E Electric Displacement C/m?
E Magnetic Induction N-sec/C-m
§ Poynting’s Vector N-m/sec-m?
c Speed of Light m/sec
€ Electric Permittivity C? /N-m?
o Magnetic Permeability N-sec? [C?
a. N =newtons, C = coulombs, and m = meters.

Wave Equations

Maxwell’s equations predict the existence of electromagnetic waves propagating
with the velocity of light, which lead to the electromagnetic theory of light. The wave
equations are obtained by vector operations [3] on Maxwell’s equations. The equations
are usually solved in applications using the appropriate boundary conditions for a
particular problem. Assuming the isotropic case (the constitutive equations),

H =



then in a region with no free charges, Maxwell’s equations are:

vVv-eE=0
v -B=20
OB
VXE=--"2
~ at
B oE
vV X Z =¢E+e——
u ~ ot

Taking the curl of equation (10), we have

VX(VXE)=-Tat— (VX B)

On substituting equation (11) for the curl B, we obtain

5 oE
VX (VX E) = - 2— E + =
( ~) ot poZTHE ot

Now, for any vector it is true that in Cartesian coordinates

VX (VX E) =V(V-E)-V2E

but V-E = 0 in the charge free region. Therefore, equation (13) becomes

9B 9%E

2 -
VIErwe op kegm 7O

Similarly, take the curl of equation (11):

VX (VX B) = ouVXE +pe —;’t— (VX E)

®

)

(10)

(an

(12)

(13)

(14)

(15)



Then, upon substituting from equation (10):

B 9?B
V X (VX B) = - —_ =
(VX B) M T ke —
or
oB 3’B
2 B = . ~ o=

Equations (14) and (16) are the inhomogeneous vector wave equations for E and B.

In a nonconducting medium, ¢ =0 and the second term in equations (14) and
(16) vanishes, leaving a propagation equation for waves with a velocity v= 1//ue .

The boundary conditions at an interface between two media are [4]:

1. The normal component of B is continuous.
(B,-B,;)-n =0

2. There is a discontinuity in the normal component D equivalent to K, the
surface charge density,

(D,-D;)-n =K
3. The tangential component of E is continuous,
(E,-E)Xxn=0

4. There is a discontinuity in the tangential component of H equal to L, the
surface current density, ~ ~

H,-H)xn=1L



Plane Waves

We now consider the homogeneous vector wave equations (¢ = 0) in which the
field depends only on one coordinate r and on time. Such waves are said to be “plane”:

2’E
V2 E-ue ~ =0
~ e
2B
V2ZB-ue ~ =90
<~k e

E@,t) =E, f(r,t)

where f(L , t) satisfies the scalar wave equation:
VIR, 0-pef(,t) =0 . A7)
Now let
f(L,t)=f(ﬁ-£—vt) ;
4 then
VE(r,t) = f' (ﬁ~£-vt)ﬁ-V£
but v T is the idemfactor [3}. Thus,

n-vr =1



and
Vi@, = af @i 1 -vt)
Vif(,t) =V.-Vf= vV-af =a-vf=n-0f =
Also
f =y (18)

From (17) and (18) we have

(19)

Hence, the solution for E and B is
E(@,t) =E,f(-r-vt)

B(,t) =B, g(i-r-vt)

The wave equations do not relate f, g, E, and B, but Maxwell’s equations do.

From Equation (8)



and substituting
E=Eof(ﬁ-£-vt) ,
we have
V-(Eof) = Eo -Vf =E, Af =0

Therefore,

Eo'ﬁ=0 ,

~

which states that E is transverse to the direction of propagation

=>
il
(@)

Bo‘

From equation (10), we have:

VXE

A~

W -
i

-B =V X (B, ©)
-E=VfXE0 = nX E, f

From equations (18), (19) and

B=Bgh r-vt)

~

. Similarly, for B

(20)

(21)



we have

B = Vue ix E . (22)

E and B are mutually orthogonal and are perpendicular to the direction of propagation
fi.
Propagation Constant
For a plane wave propagating along the positive z-axis, the component of E
along the x-axis can be written as: ~

EX = A ei(kZ - wt) (23)

where only the real part of the exponential is to be taken as the physical quantity.
Substituting equation (23) into equation (14) yields

k2 A elot-ka) (iw Aei(wt-kz)>+#ewz Aolwt-k2) - g



Therefore, the propagation constant, k, is related to the constitutive constants of the
medium

k? = pew?tigow s 24)

and may be represented as [4]

k = a, +ip,

where

and

o
-
|

1/2 172
2
<ol [(ra) )

Thus, for a conducting or dissipative medium (o > 0), the propagation constant is

complex, providing a damping part eB1Z {0 the wave which corresponds to absorption.

Polarization [2]

The plane wave
E=8&E,f(@i-r-vt)

is a wave with its electric field vector always in the direction €; . Such a wave is said to

be linearly polarized in the direction of &; . To describe a general state of polarization,
two linearly polarized independent waves are needed. Consider harmonic plane waves

ik -r-wt)
fr,t)y=e ™~ ~

10



where
L =y | and k= kT
k ~
Then the general state of polarization can be described with the following two waves:

ik ‘r-iwt
El = 81 El e~

w3}
N
il
om
N>
t
N
[¢]

with
B: = \ue ﬁx% j=12

and €, perpendicular to &, . The amplitudes E, and E, are complex numbers to
allow the possibility of a phase difference between the waves. The general harmonic
wave solution is a linear combination of E; and E, ,

ik -1 -wt)
E@,t) = (6, B, +& By e ™ ™ (25)

If E;, and E, have the same phase, equation (25) represents a linearly polarized wave,

with its polarization vector making an angle 6 = tan™! (E, /E,) with 21 and having a

magnitude E=+E2? +E;2? .

If E;, and E, differ by a phase of 90 deg, then

ik-r-wt)
E(,t) =By (6, 2ié;)e =~ 7 s

and the wave is circularly polarized. The ‘“+” sign is for left circularly polarized waves
or is said to have positive helicity. The negative sign is for right circularly polarized
waves or negative helicity.

11



For polychromatic radiation, the harmonic plane wave solution has the form

2
E(,t) = z /dkEonen(k)e
=1

ik r-wt)

(26)

where E,, are amplitude functions determined by E (L , t) at a specified time, and

€, is the polarization vector.

Poynting Vector

For a periodic field such as the electromagnetic wave, the energy crossing a unit
area per unit time is given by the Poynting vector

S=EXH

The time-average flux of energy is given by the real part of the complex Poynting

vector:
s= 1 @xun®
"~ 2 ~ ~
Because
B
H= = = £ fxE
~ u u ~

by equation (22) for plane waves, then

:_1_ _€__ 2 D
§ 2/#1Eln

The energy density & is

72

0]
]
0'2

12

@7



The Poynting vector is in the direction of propagation and can be regarded as a
measure of the intensity of the wave at a point. The Poynting vector gives the flux
density at the surface, L, which is called by Van de Hulst the intensity, “I”,

A

$=cek=kL=k
Electromagnetic Potentials [2]

Vector potentials are often introduced to simplify problem solving. According
to equation (2),

v. B =0 ;
then the field of E is always solenoidal. Since

V - (VX .Y,) =0
E can be represented as the curl of another vector éo:

B = VXA, (28)

However, A, is not uniquely defined by equation (28) because B is equal also to the
curl of some vector A ,

B=VXA , (29)

~

where

>
[

= Ao-VYy 5

13



Since
VX(Vy)=0

¥ is any scalar function of position. If B is replaced in

by either equations (18) or (29), then

dA,
VX(E+ ~ >=0
~ 3t
A
vx|{ E+ - = =0
~ ot

Thus the fields of the vector

or

0A,

E +
~ ot

or

are irrotational and equal to gradients of scalar functions ¢ and ¢4:

0A,

E:-v -
B bo P

14

3D



and

~

E=-V¢- — 32

The functions ¢ and ¢, are related by

= + ¥
® = ¢o ot

To show this, recall that A is given by

A=Ay -y

~ ~

and from equations (31) and (32),

A, A Ao

Voo + =Vo+ — = Vp+ — -V ¥
o % *F o T 5 at

_ oy
v =V¢-V—+
do o) ot

or

_ oy
Vo =V +V ——
] o ot

and finally,

15



The functions A are vector potentials of the fiéld, and the ¢’s are scalar

potentials. Using D = ¢ E and B = u H, then

A
D=-elve+ — H= L vxa
~ ot ~ u

Equations (1) and (4) of Maxwell’s equations yield:

3 aZA
VXV X A+ue VE +yue = =47
STREY e THE e TR
3A :
V2g+V.— =-- p
ot €
Imposing the Lorentz condition,
V-A+ue 9 =g , (33)
~ ot
we then have
2 G20}
V- e aatf = v-Aptpe — G4
~ €

where ¢, and A, are particular solutions. ¢ and A are defined by

%A
VX VXA-VV.-A+pue at: =pul
29 _ 1
V2g- =- 2 p 35
¢-ue Y . 35)

16



Now, using VX VX A =VV.A-V-VA,

92A
V2A- ~ =] : 36
~ ne at2 H,‘, ( )
For the homogeneous case
A’
D=-VXA' H=-V¢' - —
< ~ ~ ot
A
E=--Lvxa B =-ulve+ =
~ € ~ ~ at

the wave equations for these potentials are:

22 A’
V2 é" HE —“a—t; =0 (37)
vig-ue 2L =0 38)

with the condition that

) 3’ _ _
v-A'+ =0 . 39
2 TR (39)

Retarded Potentials

Starting from equations (35) and (36)

V2A-pe— =-ul 40)

17



%¢ _ 1
V2g- = . 4 41
¢-ue Py . p 41)

a solution of the inhomogeneous linear equations for an initial value problem can be
represented as the sum of the solution of these equations without the right-hand side
(RHS) and a particular solution of these equations with the RHS. To find the particular
solution, we divide the whole space into infinitely small regions and determine the ficld
produced by the changes located in one of these volume elements. Because of the
linearity of the field equations, the actual field will be the sum of the fields produced by
all such elements, i.e., an integral [5]."

The charge de in a given volume element is, generally, a function of time. If we

choose the origin of coordinates as the center of the volume element, then the charge
density is p = de(t) 8 (R) where R is the distance from the origin and & represents

the Dirac delta functions. Thus, we must solve the equation
2
V2g-ue 28 = . L gety sR) (42)
ot? e ~

Everywhere 6 (R) = 0 we have

2
V2¢"M€ aat? =0

For the case of central symmetry, i.e., ¢ isa function of R only, we have

1 3 3¢ 3% _
L2 (pe00) 239 -
R R ( R ) HE e

Assuming ¢ = x(R, t)/R; then

?x ei_x_ =0
Rz M€ Top

I8



But this is the equation for plane waves, whose solution has the form

x=ﬁ(h—&>+56+-5>
v v

where v=1/y/ue . Since we want only a particular solution of the equation, it is
sufficient to choose only one of the functions f; and f,. Usually it is convenient to
take f, = 0, since this physically represents a wave that is observed before it is generated.
Then, everywhere except at the origin, ¢ has the form,

¢ R

(43)

So far, the function x is arbitrary; we now choose it so that we also obtain the
correct value for the potential at the origin. We must select x so that at the origin
equation (42) is satisfied. This is easily done, noting that as R - 0 the potential increases
to infinity, and, therefore, its derivatives with respect to the coordinates increase more
rapidly than its time derivative. Consequently as R -~ 0 we can, in equation (42), neglect
ned? ¢/at?> compared with V2¢. Then equation (42) goes over to the familiar equation
leading to Coulomb’s law, i.e., from

V2g = - L de(t) s(R)
. R

and since

we have

de(t)

¢ = 4reR

19



Thus, near the origin equation (43) must go over into the Coulomb’s law, from which it
follows that x(t) = de(t)/4ne, thatis,

()

¢ = 4dreR

For an arbitrary distribution of charges p(x, v, z, t), one can find the solution
to equation (41). Let de =p dV and integrate over the whole space. To this solution
of the inhomogeneous equation we can still add the solution ¢, of the homogeneous
equation. Thus, the general solution has the form:

¢(X’ Y, 2, t) = 1 f = P X's ylaz’:t' &) dv, +¢O (44)
dne v

where R? = (x-x")? +(y-y')? +(z-2z')®> and dV' =dx’ dy’ dz'. R is the distance
from the volume element dV’ to the “field point” at which we determine the potential.
Similarly,

/ J (x', y,z',t- B—) av’
= _# ~ v +A 45
é(xa Yy, Z) 4 R ~0 ( )

m

v

Without ¢, and A, the above are the “retarded potentials.” The volume integrals

in equations (44) and (45) represent the contributions from charge distributions contained
_in the volume element. A, and ¢, represent the contributions from fields whose origin
is external to the system.

The solution of the wave equation can be accomplished “directly”” with Green’s
functions, G, where G satisfies [5]

392G

V2G-ue
B e

= §(R)6(t)

and the solution to this equation can be obtained by Fourier transforms.

20



Dipole Radiation [2]

In the following, the radiation from an electric dipole is discussed. Assume that
the distribution of charges changes little during the time r'/c where ' refers to the position
of the source point. Let the radiation of the system have periods of order T. Let a be the
order of magnitude of the system. The time r'/c is of the order a/c. So that the distribu-
tion of charges in the system shall not change significantly during this time, it is necessary
that a/c << T; but cT =2, the wavelength, hence, a condition for the following discussion
is

a << A (46)

Assume that

p(,t)=p() el 47
1@, = 1@ el 48)

and that the electromagnetic potentials and fields have the same time dependence. Since
the time-dependence factor is the same in all terms, it can be dropped. Then from
equations (45) and (48) the retarded vector potential is

iklr -1l
A@ = 7:‘— /J(r’)e—l——_ dar (49)

~ s r-1'l

~

where Ir-1'l =R, k=w/c, and d3®r’ = infinitesimal volume element. Confining the

source to a region that is small compared with the wavelength and considering r >> a
(Fig. 1), then

21



SOURCE POINT

ORIGIN

1=

FIELD POINT

Figure 1. Geometry for the source point, field point, and origin.
1 is a unit vector in the direction of r, and

-ik(ﬁ-r’ +...)
. J(@) e ~ ar
ikr 2\
A = K / . (50)

~ drr a-r
1-—= +...
T

If r>>a and a << A we can expand the exponential:

. A ?
e-lkn-r +...

=1+ (_L_ik>(ﬁ-r')+_l_ 2 . Alf—-lé) m-ry+....
r ~ 2 \r? ) ~

N '

l_n‘r
T

+...

The m™ term of the vector potential becomes

ikt (i m a
Ay, = Mo ('1k') 1+ 2 e e 2w ) frey@- )™y
4nr m! ikr (ikr)™ ~ ~

where 3; are integers. In the far field where r>> a we have

K )
lim Am__> Ilel T (“1k)m /1(1:) (ﬁ}:)m aa3r 30

K-> dnr m!

22



Taking m = 0, equation (51) becomes

ikr
A(@) = £2 : - Ja@) a3
~ N 1r ~

Integrating by parts, the integral becomes

fd%’i({:) = . fg(v'-l)d%' = -iwfg () &r

The last step comes from the continuity equation

.00 —vy.J
ot ~
or
iwp = V-J

Hence, the vector potential is

AQ) = Slwpe ™" P (52)

where p the electric dipole moment is defined as

2

p=[ro@er (53)

The electric dipole fields are

B=vxA= #9K 4yp) & (1- 1\)

23



ikr . )
= K Gxp) xfE— + -1 [3ﬁ(ﬁ-g)-p](r—13-£) elkt

~

eikr
B =-wkpu (pX n)
~ 4n r-4
(54)
N ikr A R

E=-% Bxa= 2 k2 ((an)Xn)
~ k ~ drer ~

SCATTERING THEORY

Scattering Amplitude

The scattering of plane waves by a particle is completely described by a knowledge
of the fields at every point in space. Generally, the observer is interested in knowing the
fields at his location. He desires to know the scattered fields at large distances from the
scatterer where the scattered waves are less complex and appear spherical. In this region
the amplitude of the scattered waves decreases inversely with the distance r from the

particle, and the phase has a simple gtikr dependence. The scattering amplitude defines
the strength and phase of this outgoing spherical wave. Since the amplitude and phase of
the scattered radiation differ in various directions from the scatterer, the scattering
amplitude .27 is a function of position. Since the electric field is transverse at large dis-
tances, we write the asymptotic form in the two-component notation:

ik r ikr
E@ —Ee” ~ o 6,¢) &

300

(55)
r

24



The scattering amplitude is most conveniently described by a scattering matrix
which allows the polarization directions to be handled in a simple manner.

Figure 2 shows the coordinates used to describe the direction of the incident and
scattered radiation along with its polarizations. The x,y, and z axes are fixed to the
scatterer but chosen so that the z axis is along the direction of the incident radiation.
The unit vector i is in the direction of the incident radiation having the propagation

- k!
,’/ ¢) 2 2
/ 'A» s l
|
LD |
ry - i 7
l n Kk / Z
~ I
| I //
| /

Figure 2. Geometry for the scattering theory.

25



vector k, and the unit vector 7' is similarly defined for the scattered radiation having
the propagation vector k' [6]. The vectors fi and i’ (or k and k') define the

scattering plane, and the angle between i and fi' is the scattering angle 6 (0 < 6 < 180).

The components of the electric field are referred to the f- ) system for the
incident radiation and the ¥ -2’ system for the scattered radiation. These systems
simplify the discussion of polarization direction. The unit vector T is perpendicular to
the scattering plane, and the x-axis of the particle makes an angle ¢ with 2. The unit
vector Q, which is in the scattering plane, is chosen so that tX £= fi, and the unit

vector ¢ is chosen so that ¥ X £ = A'. The unit vectors & and ¥ are the same. The
quantities Eo, and E, g are the amplitudes of the components of the electric field in

the incident beam along the two directions defined by  and 2. Likewise, E, and E,

are the electric field components of the scattered radiation along ' and Q.

The scattering amplitude tensor which relates the incident and scattered waves is
defined by

okt oHkr
Egca = (0, ¢) =5(9,¢)E, (56)
~ ~ I =
or
Ee\ /52 83 Bog \ ikr
T
E, S, S Eo,

The four scattering amplitude functions S;,S,,S;, and S, are all functions of § and
¢ and, in general, are complex. As stated above, the components (Eg,E,) and

(Eog, Eo,) are referred to different sets of coordinates, i.e., (’ﬁ’, 'f’) and (ﬁ, 'f). Hence
the scattering amplitude tensor is a function of k and k', i.e.,

[{R2]

,9¢) = Sk, k)

~

The linear relation implied by the S-matrix (scattering matrix) between E and E,
is a consequence of the linearity of Maxwell’s equation. Because E and E, are vectors,
S (k,,‘ls') must be a tensor as shown. For no scattering, S reduces td a unit matrix.

26



Differential Cross Section -

The differential scattering cross section do/dQ is the ratio of the flux scattered
from the object per unit solid angle to the incident flux on the object per unit area.

do

energy scattered/unit time/unit solid angle

dQ

— v - (57)
energy incident/unit time/unit area

In terms of Poynting’s vector, S, for the incident and scattered fluxes, we have

~sca R = Leca R?2
§jnc Lil’lC

Scattering by Electric Dipoles (Rayleigh Scattering)

We now consider an electric dipole at the origin of a Cartesian coordinate system
upon which a monochromatic plane wave impinges from along the negative z-axis

(Fig. 2).

If the electric dipole is generated by electrons and if the incident wave is &
harmonic plane wave of the form,

E = EO /i\eikZ'iwt

then the equation of motion is

mr = eE (z=0)

Since p = er, the electric dipole moment is found from

p= < E@z=0 |,
~ m~
to be
2 A
p=--—— Ei
~ m
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Note that the use of E at z=0 in the equation of motion implies that r << A, i.e.,

the dipole approximation.

In a dielectric in the presence of an externally applied electric field, the molecular
dipoles are streteched and become oriented. A net electric moment is produced in the
direction of the applied field. The dipole moment per unit volume for an isotropic
dielectric medium is related to the external electric field by

p=akE

where a [C?m/N] is the proportionality constant, the polarizability, and is dependent
on the frequency of E. From the discussion on dipole radiation the radiation fields for

an electric dipole are [eq. (54)]

ikr
g=-—‘ki gxﬁ= :ﬂer k’((gxﬁ)xﬁ)
ikr
B pxd

where E, B, and p were assumed to have a harmonic time dependence.

~

Since the incident electric field is along the z-axis

E. = E, ekz-iot ]

~L

nc

or
Eie = (Bopf+Eqg ) elkz-iwt

~1

where Ey,.=Eq sin¢g and Eq( = Ey cos ¢. Hence
T 2
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ikr
- _ wpukel ~r
Esca B P (aEincx n')

where we have used

P = aBic
£ - 2=0
Then
Esca = '(Z—:rl‘( ‘J-elkr(Eori'\>< ﬁ"l'EoQQX 1) (58)
Now since
f=7 fX A = -
X ' = fcosg fgx A =1
where we have used £ =/ (2,') and cos6 = sin . Therefore,
= wﬂkaeikr () A
Bea = - —p—— (Eo, (-2)+Eqq (fcosd)
~ dnr
and
—_ w Ar
Bsca = - % Bgca X 1
ikr 2
ac k E o i ALy A
T -n X )+Egpocos6 (n' X T
4rmer ( or( ) og ( ) )
ikr 2 ~ N
dner
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Hence,

EQ _ K2 eikr cos 8 0 EOQ

sca 41T €r 0 1 Eo
' T

S; 85\ [ Eoy ikr
= ¢ (60)
S4 Sl EOr T
where
2
g, = ak?cosf
2 dne
(61)
S — ak2
! 4ne

The time-averaged Poynting vector for the scattered wave is

S =

1 #*
sca ‘i’ (Esca X ,I;Isca)

In the far radiation zone, E and H are perpendicular to each other and to the direction

of propagation. For a harmonic wave under these conditions,

H = /£ 4ixEg* ;
~ u ~

thus

*

- 1 Al
Seca = > (Esca X (o' X Esca)> Z_ ’
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or

g — 1 € (12 k4

2 A 2 ",
2ca = 5 /T Grer (Bo, n' +Egg cos® 6 n') (62)

Therefore, the energy flux densities L= 1/2+/e/u E? for the incoming and scattered waves
are related by

L. = —2 K g tcos?olL 63
€3~ Are) 2 ( inc, cos ian) (63)
If ¢ =0 deg, then
_ a? k* .
Lsca = (Are) 2 cos” 6 Line )

if ¢ =90 deg,

- a* Kkt

Lsca ‘("4—7T e)? 2 Linc
and if ¢ =45 deg or the incident radiation is unpolarized,

L _ a? k*

1
sa = argry 2 (LFeos” ) Ling (64)

For natural incident radiation, this is the same as averaging over all polarization angles,

2n 27
_ a? k? Linc . cos? 9
Loca = Gy 2 o f sin? ¢d¢ +L;c >a f cos? ¢do
0 0
- a® k* 1

~———————(4ﬂe)2 2 ——2— (1+ cos? 6) Linc
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This scattering is called Rayleigh scattering. The differential scattering cross section becomes

L., 1%
do _ Tsca = _ak 1 (1 +cos? 9) . (65)

do Linc (4ne)® 2

Rayleigh-Gans Scattering [7]

Assume that each volume element in someé finite volume gives Rayleigh scattering
and does so independently of the other volume elements. The waves scattered in a given
direction by all these elements interfere because of the different positions of the volume
elements. To calculate the interference effects we have to refer the phases of all scattered
waves to a common origin of coordinates and then add the complex amplitudes (Fig. 3).

1;»

*ldv

Figure 3. Scattering by a finite volume.

Consider the volume element in Figure 3. If p is the dipole moment per unit

volume, the magnetic induction for the scattered field at point P is

ikR .
B =- “451 (p dV X f)
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Integrating over the volume, this expression becomes

ikR
B =- ‘*’4’;“/3}{ dv (p X m) (66)

With A, aunit vector in the incident direction, and M, a unit vector in the scattered
direction, the phase of elkR (Fig. 4), ie., kR is k [Ro +r - (M- ﬁ)] . The wave “2”

has to go (r - fi) farther to get to the scatterer, but for wave “1” the scatterer is (r - i)

farther in front of the origin, R, is large compared with the body size. Hence,

ikr - (- 1)

ikRo 1
B = (oxd) (- wuk) e / dv
~ ('P‘ m) ( 4q Ro ©

which differs from Rayleigh scattering by a factor of the form S eld dV, where

8§ =kr - (Mm-10). We now evaluate the normalized factor

=>

1]
ol| 3

!

Figure 4. Phase change due to scattering.
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R(0,9) = %feiﬁ v 67)

for a cylindrically shaped body. As seen from Figure 5 the vector fi -0 has the length
2 sin (8/2) along the bisectrix of the direction fh and - fi. Hence,

5 = s2ksin %- (68)
where

§ = T- (n-n) (69)

~  Im-al
Hence,
ik . 1
1 ik ssin —2— 0
R@,p) = v De ds (70)

where we are integrating over “slices” perpendicular to the bisectrix, and each slice has an
area D and thickness ds.

BISECTRIX

Figure 5. Geometry of Rayleigh-Gans scattering.
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We have assumed that the phase shifts of the wavelets passing through the medium
are small, i.e.,

2kaim- 111 (71)

where a is a length of the order of the size of the particle, and m = the index of
refraction.

Circular Cylinders of Finite Length

The function R(8, ¢) can be calculated for the circular ¢ylinder of finite
length. Let its length by ¢ and its diameter 2a, and let the phase shift be small for a ray
traversing the cylinder in any direction. The orientation of the cylinder with respect to the
incident wave is arbitrary (Fig. 6).

INCIDENT
BEAM

5 e rrrreyrery
s 2“’&%%3 2

B

Figure 6. Geometry of scattering by a cylinder.
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The volume integration will be performed by using circular slices which are perpen-
dicular to the cylinder axis since this is easier than using slices perpendicular to the
bisectrix.

ikr - (m - n) n .
To calculate ¢ ™ let r =ix+ jy. Fix the axis of the cylinder so that the

bisectrix lies in the y - z plane. Then, m-fi=a, f+ a, k and
r-(m-n)=ya

Since I -1l=2sin6/2 and is in the same direction as the bisectrix,

a; = 2sin —62— «::os(—’zr~ -ﬁ)

or
A 8 .
a, = 2sin — sin
2
where § is the angle between the cylinder axis and the bisectrix, and

T -(r’ﬁ-ﬁ) = 2ysin %— sin B

~

With this relation and with the phase referred to the center of the disk,

) ikr - (- 1)
Rp(0.¢) = - e ™ dD
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becomes

]

21ky sin 2 sin g
2 a? -y? dy (72)

. 2iky sin 2- sing
— e : 2 dx dy
D 2

y

We can make a change of variables by letting

and

a2k sin —g— sin 8

<
[

then

+1

Rp @,¢) = —;— f eV a2 \/1-w? dw
-1

+1

= 2a: f eiv“’\/l_-_c_o_? dw
7a
-1
1 -1
= 2 f etV9 /1-w? dw- [ eiv"’lx/l-w'2 do'
w
0 0
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Let w'=-w in the second integral

1

1
RD(6,¢)=—2—/ eV /1 - w2 dw+/ Ve /1-w? dw ,
i3
0 0

or
1
iv -iv
Rp (6,9) = 4 / (Lii@.i) 1-w? dw
T 2
0
and hence
1
Rp (6,9) = f cosvw v/1-w? dw
0
= F(v) = % NG (73)

where J,(v) is a Bessel function of order n and
1

Fv) = & cosvew V1 -w? dew (74)
m

The phases of the disk have been referred to the center of the disk. In considering
the whole cylinder, the phase can be referred to the center of the cylinder. This introduces
another phase factor given by

kzk-@h-7)
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But since
(l’?l-ﬁ) = al 3.\+az 1’(\

the phase is k za, where a, = cos . This phase effect is given by

&
, 1 / i2kz sin —g— cos f
R = =
R
2
Let
”=kain—62——cosﬁ ,z=t% , dZ=—;—dt
then I3
L £ 2 2 0 2 0

]
o R}
[
(e}
[*]
7
=
-
(o N
=3

Thus we can say

1 1/2
EQ) = f cos ut dt = (—2—’L-> Ty, @) | - (76)
0
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The final phase factor is the product of the two phase factors, i.e.,
R(0,0) = F(Z ka sin -’;— sinﬁ> E(ksz sin %— cos B ) .

The angle 8 and be related to the angle a between the incident light and the z-axis
the angle /2 and the azimuth angle ¢ between the incident light — z-axis plane and the
incident light-scattered light plane by (Fig. 7)

cos B = -cosa sin —92—— + sin a cos —%- cos ¢ amn
INCIDENT
DIRECTION
/@9
Q ® SCATTERED DIRECTION
AXIS OF
THE CYLINDER B Sy
2 2
BISECTRIX

Figure 7. Scattering angles.
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To find the scattering amplitude tensor we follow the steps as in the Rayleigh scattering
section to obtain:

. ikR
B =- <K xS VRE,9)
~ T~ Ro _
ikR
E = —°2—2B—((p><r'r\1)x rﬁ) € VR(@,¢) (78)
~ T ~ Ro
K2 @V) oikRo N N
4”(60 = o' +Eogcoss P)R (0, 9)
Hence,
2
s = LN R,
1)
S, = @%r)e—kz— cos 0 R(9,9) (79)
0

We note that since R (6,¢) is independent of polarization effects the polarization will be
that of a Rayleigh scattering particle:

IS, 1 - 1S, 12 1-cos? @ sin? 0
P@) = = = 80
©) 1S; 2 - 1S, 12 1+cos? @ 1+ cos? 8 (80)

The differential scattering cross section is

do _ @V k*
aQ (47 €4)?

R2(0,4) % (1 + cos? 6) 81)

The appendix gives a computer program listing for calculating the functions F and
E and the scattering intensity functions. Also included, but not derived in this paper, is
a phase factor for spheres G. Table 2 tabulates some values of these factors. Figure 8
shows them for comparison.
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3. 30
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EQ)
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.08383
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«12802
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LOR5yN
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Randomly Oriented Cylinders (7]

To obtain the differential scattering cross section in the Rayleigh-Gans domain for

randomly oriented cylinders, an integration over the solid angle of the orientation of the
cylinder is performed:

R2

1 2
y fR 6,9¢) da2 (82)

where E; is an average cylindrical function for random orientation. The values § and ¢

are considered fixed. The solid-angle integration reduces to an integration over 8. For the
case of thin rods (R - E),

1
R2 f E? (zcosp)dcosp

0

2z
_l_ / sin w de - ( Sin Z > 2 (83)
YA w VA

0

i

where z =k sin 1/2 8. The first term is the sine integral. For the case of disks,

1
§=f F(z sin §) d cos § = mz%——[l-F(2z)] (84)
0

where z=2kasin 1/2 6 .

Lorentz-Lorenz Formula [8]
The relation between polarizability and refractive index will now be derived.

An external electric field stretches and orients molecular dipoles in a dielectric.
The amount of polarization P is equal to the average electric dipole moment per unit

volume. The polarization induces a field which modifies the relation between the intensity
E and the displacement vector D. Hence,
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D =¢ E+P (85)

The total polarization is caused by (1) polarization by stretching P, and (2) polarization
by dipole orientation P,. The polarization caused by elastically “stretched” molecules is
given by

Pl = N a E’ (86)

~

where N = the number of molecules per unit volume, a = proportionality constant
(polarizability), and E' is the effective internal electric field for the dipoles.

The polarization caused by orienting the permanent dipole moments can be
approximated by

p* NE'

1
P, = Sl 87
P =3 T (87)

where p is the molecular dipole moment, k is the Boltzmann constant, and T is the
temperature. But for an oscillating field the relation becomes

— sz 1 lwt '
P, =
~ 7 3KT (1+iw1) R

where 7 is the relaxation time for the dipoles, and 7 is related to the fractural torque on
the molecules and the temperature.

The Clausius-Mosetti theory gives the value of the internal field for a dipole as a
function of the external field E and the polarization P. Consider a cavity within a

dielectric. The local field in the cavity is made up of two parts: (1) the external field E

and (2) the field produced by the polarization within the cavity. This second field can be
calculated knowing that for a small area dA on the surface of a cavity the induced charge
density is P cos #. For a spherical cavity the amount of charge induced in a spherical zone

is 27r? P sin 6 cos 6 df, and the field at the center of the cavity is 1/2 eo P cos? 9 sin 6 d4.

Integrating over all the charges gives the total field as P/3 ¢,. Hence, the internal field is
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L

E' = E+ (88)
~ ~ 3 €g
Using D=P + ¢, E =¢ E, the Clausius-Mosetti relation is obtained:
P P
E' = - + ==
~ € - €p 3 €o
, e+ 2 €p ,.];),
E = < (89)
~ € - € 3 €0
For polarization due to elastic stretching alone,
P - -1
= = 3 €9 = Na
E £ +2
or in terms of the refractive index, m =+ €/eéo,
m? -1
Na = 3¢ (——2——> (Lorentz-Lorenz) (90)
m? + 2

Including permanent dipoles gives the following expression:

m*-1 _ _N {a+i£—2— 1
m? + 2 3 ¢ 3 kKT l1+iwr

showing the variation of the complex refractive index with temperature and frequence.
For very high frequencies the second term in the bracket is negligible. Then the Rayleigh-
Gans differential scattering cross section in terms of the refractive index is

2

do ey (22.;1_> L (+cow )R 6,0) O
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where

Na =3¢ -l b 2¢ m-1) 92)
m? +2 m-1

Scattering by Infinite Cylinders

In conclusion we will consider the specific case of a thin infinite cylinder. According
to Cooke and Kerker [9], the radiation scattered from an infinite cylinder lies on the sur-
face of a cone whose apical angle is twice the complement of the tilt angle. From Rayleigh-
Gans scattering by cylinders (ka << 1), the expression for the scattered intensity is given by

[71:

do _ k*V?(m-1y
dQ 8 2

(1 + cos? 0) - B2 (ksz sin %— cosB) (93)

For infinite cylinders (2>c) E becomes significant only when cos g = 0, which includes
9 =0, the forward scattering direction. This yields by equation (77)

cOos a sin ( (—%—) 0) = sin a cos ( (—%—) 0> Cos ¢ 94)

Using this restriction on a in the expression

cosy = cosa cosf +sina sin 8 cos ¢

or

cos v cosa(2 cos? %- 1)+sina (2 sin ~g—- cos % )cosqb 95)

where v is the angle between the cylinder axis and the scattering direction, gives the basic
result that the scattered light is confined to the surface of a cone of apical angle 2a

ie., vy=a.
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Theoretically, one can show the formation of the scattering cone of the infinite
cylinder by varying the length of a finite cylinder. Figure 9 shows the normalized scattering

differential cross section

daQ

do (8=0)

dQ

do ()

do(8)

dQ

do(6=0)

dQ

= B2 (ksz sin % cosﬁ>~F2(2kasin —g— sinﬁ) (96)
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Figure 9. The effect of varying the length ¢ of a finite cylinder
of radius a=0.03 um and refractive index m = 1.33
(—2=0.1um,----2=1pum, — 2= 10 um).

versus the scattering angle for the particular case where the scattered beams lie in the plane
defined by the incident beam and the axis of the cylinder (Fig. 10). The cylinder of radius
a= 0.3 pm has a tilt angle of 60 deg; hence, the scattered beams with scattering angles of
60 deg and -120 deg coincide with the axis of the cylinder. For a length 2 =0.1 um
(2/a~ 3), the peak due to the scattering cone has not appeared. A wide scattering cone
peak is seen for the case =1 pum (2/a~ 33) at 0 deg and 120 deg. For £ =10 um
(2/a~ 333), the scattering pattern approaches that of an infinite cylinder with a scattering
cone having an apical angle of 120 deg. The value of the normalized scattering differential
cross section at § = 120 deg is nonzero, and not 1 as a result of a finite radius, i.e.,

48

% F? (2kasin %) (1+cos? 8) = 0.561

The cone can easily be seen with a milliwatt helium-neon laser (0.6328 um) and a
slender wire [10]. Flgure 11 shows the geometry of the experiment and photographs of the
scattering pattern. Both the 25.4-um-diam copper wire and the 1034-um-diam wire shown



SCATTERED
BEAM

INCIDENT

BEAM

Figure 10. Cylinder scattering in the
plane defined by the cylinder
axis and incident beam.

have a tilt angle of approximately 60 deg.!
The incident beam is made visible through the
use of smoke. The scattering cone cross
section is observed on a plane normal to the
axis of the cylinder. Note that the incident
beam lies on the cone in the forward scatter-
ing direction. The thick wire is visible because

. of the light scattered by the smoke. The black

patch seen in the photograph of the thin

wire was used to reduce the amount of diffuse
light coming from the screen. Cooke and
Kerker [9] explain that the irregularities of
the diffuse circles for the thick wire are
caused by contamination on the wire, e.g.,
dust. The fine concentric circles which appear
in the thin wire case are probably caused by
irregularities on the surface of the wire.

1. Although Rayleigh-Gans theory is not applicable, the scattering geometry is equivalent

to the Rayleigh-Gans case.
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Figure 11. a. The experiment geometry.
b. Scattering from thick wire.
¢. Scattering from thin wire.



APPENDIX

COMPUTER PROGRAM

A listing of a computer program to calculate I, and I, for Rayleigh-Gans scattering
for a cylinder and a disk is presented, followed by a sample output. The input/output
information is given on the comment cards at the beginning of the program. A flow chart
is presented in Figure A-1. For reference:

2

I, = k8 V2 <m—1) R? (0,9) (A-1)
27
I, =1, cos? g (A-2)
I, +1
I = i +l) (A-3)
2
Il '12
P = A-4
L oL (A-4)
and
I, +1
dG _ 1 2 .
do 2k? (A-3)
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14
5

6
7
8
9

10
11
20
21

1
22

23

24
25

THIS PROGRAM COMPUTES I1 AND I2 FOR RAYLEIGH-GAN SCATTERING
SPHERFT S z{3(STNU~UCCSUIZU3)
O0TSK F=2BESS1U/U
RON TISINU/ZU
CYLINDER E=xF
ELLIPSOIDS-~USE 6G(U) NITH THE RADIUS REPLALZED BY 0OC
(SEE VAN DE HULST PAGE 93 )
INPUT ® % % k% %k K k% %% %k ok %k k&
NTZNUMBER OF RUNS
INDEX1z1=SPHERE
T2-CYLIRDER(DISK OR ROD AS LIMITS)
INDEX2=1> NO INTEGRATION OF BFETA
T2 INTEGRATION GVER ORIEMTATION
FM ZREFRACTIVE INDEX (RELAL)
A ZRADIUS (MICRONS)
WAVE SWAVELEMGTH (MICRONS)
FLCLENGTH OF CYLINDER
BETAZANGLE BETWEEN CYLINDER AYXIS AND THE
BISECTRIX (OF SCAT DIRECT AND THE AXIS OF CYLINDER)
CUTOU Tk stk oxkkxk

ALP CZALPHA
XI1 =11
X¥2 =12

P ZPOLARIZATTON
THETA =SCATTERING ANGLE(D~180 DEGes STEP=5)

Ak kk Rk K KRRk K kk Rk k¥ kR kkkkkk

FORMAT(3IH #**RAYLEIGH-GANS SCATTERING**%+//])
FORMAT(184 REIFRACTIVE INDEXZeFT7 .30/}

FORMAT(17H PARTICLE-RADIUSCZFT7.3+98H LENGTHZ «FT7.3¢v/)
FORMAT(12H4 WAVELENGTHzZsF7,3+/)

FORMATC(TH ALPHAZ¢F7.3¢/)

FORMAT(1HO 1 1H SCAT AMGLE»T7Xe20H INTENSITY FUNCTIONS 19X,
1234 DEGREE OF POLARIZATIONs //+11H THETA(DEG) » 7Xo3H TI1+12Xe3H I2v
26X 84 I1+4712/2+13Xe24 Ps/)

FORMAT(1IHT)

FOARMAT(1H +T1%5+8X+3F15.6+4XeF3.56)

FORMAT(8H INDEXIzZeI3s22H 1=SPHERE 2ZCYL INDERY
FORMAT(83H INOEX2z=¢I3s9H 1=BETA«F5.2¢25H 2-INTEGRATION OQVER BETA)
FORMATI(IZ)}

FORMAT(213,2F10.5)

READ(S5,1)INI

NNZ1

PTI=3.1415927

PI2z2.%P1

CONT INUE

READ(Sy 22 INDEXL1 2 INDEX29 BETAFL

BFETAZBETA*PI/18C.

READ(S»3)F¥e AW WAVE

FORMAT(3F10.3)

FK=PI2/WAVE

G0 TC (23+24) ¢ INDEX]

VOLZ{4,.,*xPT*A%«3)/3,

cn 10 25

VOLZ{(PTI«A®*2) xFL

CONT INUE

A321.7/3.

ALP FOR CYLINDER IS CALCULATED FOR. EQUIVALENT SPHERE



ALPZPI2#(3.*2V0L/7(4 . «PT))}**A3/WAVE
CHIZ(FK&*G«VOL*%x2) % {{(FM=1,)/(2.%PI})*%2
WRITE(6+10)

WRITE (G, 14}

WRITE(G+5)FM

WRITE(G+B) AeFL

WRITE(GsTIWAVE

WRITE (6+8)ALP

WRITE(6+20) INDEX]

GO TO (2692729 INDEX]

27 WRITE(GE+21)INDEX2+BETA

26 CONTINUE
WRITE(B6+9}

THFTAZ.O

DO 4 T=1.37

2122. %F K« A*STN(THETA/2.)
Ul=zZ2 I«SIN(BETA)

Z2FKxF L*SINITHETA/2.)
U2=Z2+COS(RETA)
Uz2.xALP*STIN(THETA/24)
GO TO (28+293)+INDEX]

28 FTYAZLR{U) Y %D
Gn TO 30

29 GO TO (31+32)+INDEX2

31 ETAZ(FAULI»»E(UZ2) ) *%2
GO T0 30

32 CALL RBARZ2{(Z1+22+ETA}

30 CONTINUE
ZETAC(COS{THETA) ) %%2
XI1=CHI=*=ETA
XI2=-XI1+ZETA
XI112=(XI11+X12)/2,
Pz{XI1~-XI2}/(XI1+XI2)
NTHZS5%I-S§
WRITE(E+1IINTHs XTI XIZ2ZsX%XI129P
THETACTHETA+S5, =PI/ 1440,

4 CONTINUE
NNZ=NN+1
IF (NN-NIY2+2+13

13 CONTINUE
STOP
FUNCTION G (U)

EPSZ.000001

IF (ABS{UI-EPS)302+302,391
202 6-1.

60 T0 303
301 G (SIN(UI-UxCOS(UII/Z(U%x%3)

G=53.
3032 CONTINUE

RFETURN

FUNCTION E(UY

£FPS=. 000001

IF (ABStU)I-EPS)I312+312+311
312 E=1.

GO 70 313



311
313

322
321

323

10

20
30

31
32

34

38

10C

110

120
130

140
150

160

54

E-SIN(UY/U

RE TURN

FUMCTION F(W)

£PS=, 000001

IF (ABSHtU)-EPS)322+3222321
Fz1l.

GO TO 323

FoBSSL{Uelt

FzF*2./U

RF TURN

FUNCTION BSSL{XsN)
NT.000001

Bs=0.

IFIN)10+20+20

IER=1

RETURN

IF(X)30+30s 31

IFR=2

RETURN

IF(X-15,1329 32+34
NTEST=20e+10.%2X-X®2%2/3,
G0 10 356
NTEST=S80.+X/2.
IFIN-NTEST)U0.,38+38
IERz Y

RETURN

IER=-Q

N1 =N+1

SPREV=.0
IF(X-5.)150+60+560

MAZ X365,

G0 70 79

MAZ 1 u*X+60./X
MBIN+IFIX{X)/4+2
MZERPOZMAXO(MASMBY)
MMAXZNTEST

0N 130 MZMZERO +MMAX 2
FM1zZ1.0E2~-28

FMz .0

ALPHAZ,.G

IF (M-(M/2)*2)120G+110+120
JTz=-1

GO0 TG 13C

Jv=1

M2=M-2

NN 160 Kz1.M2

MKZM-K

BMKZ2 *FLOAT (MK ) «FM1/X~-FM
FM=F M1

FM1IZBMK

IF (MK-N~1)150+140+150
8J=8MK

JTz=dT

SzT1+47
ALPHAZALPHA+3IMK*S



170
130

190

200

BMK=2.,%FM1/X~FM
IF (N)>180+170+180
BJz B MK
ALPHAZALPH A+ 3MK
BJ=B J/ALPHA
B8sSSL=8BJ

IF (ABS(BJ-BPREVI-ABS(D*BJ))200,200,190
BPREV=8J

IERZ3

RETURN

END

AFOR.IS RBAR2

c

312

311
313

322

321

323

10

SUBROUTINE RBAR2(Z1¢Z2+ETA)
INTEGRATES OVER ORIENATION OF THE CYLINDERS
DIMENSIGN Y(I6)+4(161}

CALL INT16(YA)

ETA=.O

N 1 Iz1l»185

Fi=(Y(I))
U1zZ1*S3RT({1.-F1l«F1)
U2=22«F1
ETIIF (UL *E{U2) ) % %2
ETACET*A(I) +ETA

CONTINUE

RETURN

FUNCTION G(U)

EPS= .000001

IF (ABS{U)I-EPS)302+302,301
G:Ic

G0 70 303
Go{SIN(UI-~-U*COS{UII/Z(Ux=*3)
GzG*3.

CONTINUE

RFE.TURN

FUNCTION £t(W)

£°Sz. 000001

IF (ABS(UI-EPS}ITI21312+311
2= Y

GNn TO 313

EZSIN(UI/U

RETURN

FUNCTION F (U}

£PST ,.000001

IF (ABS{U)-EPS) 32243224321
F=z1.

60 70 323

FZBSSLA(Us 1)

FeF*x2./U

CONTINUE

RETURN

FUNCTION BSSL{XsN)
D=.000001

BJ:U.

IFINI10+20+20

IER=}
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20
3

31
32

34
36
38

40

50

60
70

100

110

120
130

140
150

150

170
180

190

200

RETURN

IF(X) s0+30e31

IER=2

RFETURN

IF(X=15.132 .2+34
NTES Z20.+10,%X-X%%2/3,
GO T 36

NTEST z90.+X%X/ 2.
IF(N~ITEST)I4L» 38438
IER=y

RETURN

IER=Q0

NIZN+}

BPREV=.Q
IF(X-5.150+60060
MAZX+5 .

GO TO 70
MAZle4*X+50,/X
MBIN+IFIX(X)/t4+2
MZERO-MAXC(MAIMB)
MMAXINTEST

00 197 MZMZEROsMMAX 3
FM1=-1.0E-28

FMZ.0

ALPHAZ.O

IF (M-(M/2)%2)120+110,120
JTz -1

G0 70 130

JTz1

M2=M-2

00 160 K=z1leM2

MK =M~ K
BMK=2.*FLOATIMK)*FM1/X~-FM
FM=FM1

FMITBMK

IF (MK-N-1)150+140+150
RJZB MK

JT==4T

Sz1+uT
ALPHAZALPHA+ SMK =S
BMK= 2. *FM1/X~FM

IF (N)180s170,180
BJ=BMK

ALPHACZALPH A+ 3MK
BJSBJ/ALPHA

BSSL=3J

IF (ABS(BJ-BPREV)I-ABRS(D*BJ))200»20C+190
BPREV=BJ

TER=3

RETURN

END

AFOR, IS INT16

56

SUBROUTINE INT16(YsA)
DIMENSION Y(16)eA8(16)
15 POINT GAUSSIAN SUBROUTINE



c Y AND A MUST BE DIMENSION IN CALLING PROGAM
Y(1)= .95012510F-01
Y(2)=- 0.28160355
Y(3)z D.45801678
Y(4)= 0.61787624
Y{S)= D.7554044]
Y(6)= B.86563120
Y(7)z 0.94457502
Y(8)= 0.98940093
A1)z 0.18945061
A2}z C.18260341
A{3)= 0.16915652
Af4)= 0.14359599
A(S)= 0.12462897
A(R)= .95158512€-01
A(T)Z .52253524F-01
A(RY= .271524595-01
DO 8 I=3:16
I11-17-1
Y(I)==-Y{(IT)

8 ACINZA(ID)
RF TURN
END
AXQT



#*#RAYLEIGH-GANS SCATTERING***

REFRACTIVE INDEX= 1.300

PARTICLE-RADIUSE «100 LENGTH=100.000

WAVELENGT Hz =500
ALPHAZ 11,417
INDEX1z 2 1=SPHERE 2=CYLINDER

INDEX2= 1 1=BETA, 1.57 2-INTEGRATION OVER BETA

SCAT ANGLE INTENSITY FUNCTIONS DEGREE OF POL ARIZATION

_THETA(DFEG) 11 12 I11+727/2 P

1] 88601.623047 88601.623047 88601.623047 .000000

S 88335, 746094 87664 ,736328 88000.241211 .003813
10 87544.,.115234 f4904, 336914 86224 225586 015308
15 86244,449219 30467 .165039 83355.806641 +034654
20 S4LES . 475586 74584,890625 79525 ,182617 0062122
25 82245.773437 67556.167969 74900.970703 «0980680
20 79632.217773 59724,162598 69678.189453 .142857
35 76678,210937 51451 .852051 64065.,031250 «196881
4p 13441 .691406 43097,353516 58269 ,522461 .260379
45 £9983,120117 34991 .560547 52487,.340332 2333333
50 £6363.496094 27419,.738584 46891 ,646973 415252
) 62642,520996 20608.758789 41625.,633648 «504902
60 58876.954590 14719,239868 36798 ,097168 .600000
65 55119.285645 9844 ,647095 32481.966309 «696920
70 S14lc.AR1G4] 6014,610291 28715 ,645752 2790546
75 478104275391 3202.682007 25506.478516 «874437
gn 44334,748047 1326.856812 22835 ,802246 2941458
85 41018.243164 311.573933 20664,311377 «984922
an 37882.488770 L00a000 18941.24438% 1.000008
95 34943.179687 265.432404 17604,305908 « 984922
100 32210.480225 971.264244 16590,.872070 341458
105 29689.675781 1988.830307 15839.252930 «8T4437
118 27381.871826 3203,069519 15292,470581 . 7905486
115 25284,722656 4516 .006653 14900.,364624 +696920
120 23393.163086 5848,.288818 18620.725952 600000
125 21700.095459 7139.,110352 14419,.602905 «504302
130 20197.029053 8344,923218 14270.976074 2415252
135 18874.645996 9437 .3193%46 14155,982910 «333333
140 17723.308105 10400.461060 14061.884521 »260379
145 16733, 472900 11228.325806 13380.899292 «196881
150 15896.047119 11922,032349 13909,039673 2142857
155 15202.678955 12487.,383545 13845,031250 «038060
1€0 14645,975708 12932,719727 13789.34765¢ .062122
165 14219.686890 13267 .146606 13743.416748 .034654
170 13918.827026 13499,121460 13708 ,.,974243 .015308
175 13739.775757 13635.405762. 13687.5906938 .003813
180 13680,336426 13680,336426 13680 ,336426 .000000
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BEGIN ezl
— =137 fp=——-—---
READ NI r I INED I |
L | Z1 - 2kaSIN(B/2) }
: | Up= Z;SINP
2 ; z,= SINe/2) |
/ READ |NDEX1 / U, =1, cosp |
2
INDEX2, 8,1 } U = 2aSIN(©/2) {
' |
| |
| |
| |
| I
PHER { |
‘ Hgﬂ ~ | CYLINDER |
4 3 - ol 2 n= ’
\/ a Y =mwa4l : n=(Fluy) E(u2) 'I'z]';,IFEm |
|
«= 2(3Y)1/3 | © ] I
) m-l)z | 1 |
x= kv I {=cos2e
WRIT / 1= (Iy+15)/2
‘ 1t
/ ‘m,q,i, A o INDEX1 ! P= (1] =la)/dy +1p) I
oo | |
26,21, I / WRITE ©,11,12,1,p / }
] I
|_ . {

FUNCTIONS
Glw) =3 (SINu-uCOSu)/u
Flu) = 24, (v)/u
E(u) = SINu/u
Ji(u) = BESSEL FUNCTIONS

Figure A-1. Flow chart for Rayleigh-Gans scattering program.
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